

Combined heat and power (CHP) & Industrial burner gas production at the manufacturing site

> Thomas Bräck Business Development Director

Agenda

- Why gasification?
- Meva Energy's solution
- 2 case examples
 - Tissue drying
 - Engineered wood production
- Biochar as valueable by-product

Industrial process heat constitutes 24% of total world energy consumption

Bioenergy needs new solutions

Contaminated biomass such as MDF-dust Emission challenges: Particulate, NOx Fine fraction biomass

Local circular energy system at your facility

MEVA

E

Penewable Heat and Power

of renewable gas

THE Q

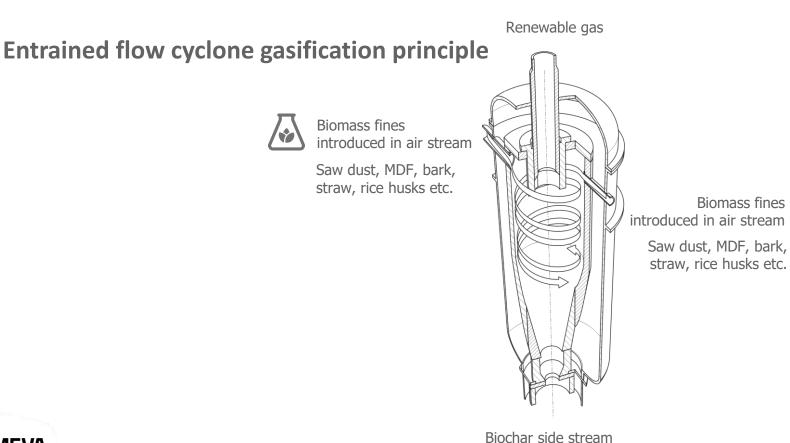
MIL

ion

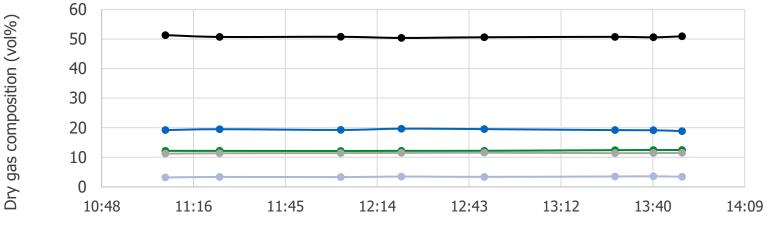
biomass

Meva Energy existing gasification plant in Piteå, Sweden

Industrial scale CHP plant installed in Piteå, Sweden


Capacity: 1,2MWe and 2,4MWt

The existing Hortlax plant, Piteå Sweden



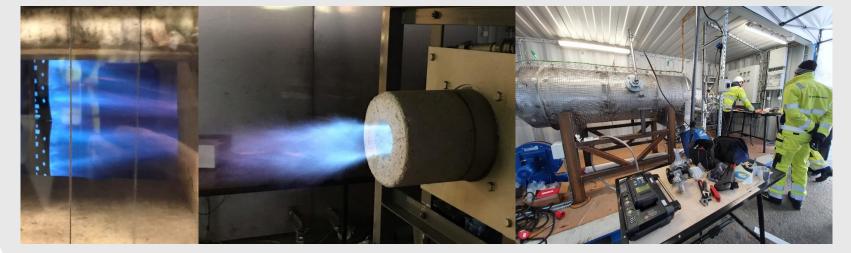
Stable gas flow, temperature and functionality

Calorific value 6,5MJ/Nm3

More efficient and less costly than conventional biopower solution

	🔗 MEVA ENERGY	Conventional Biomass Steam Turbine (comparable size)
Capacity	2.6 MW	<10 MW
Power generation efficiency	30%	14-18%
Capital costs/MWe (%)	53-87%	100%
Operating costs (% of capital costs)	4%	5.5-6.5%
Harmful NOx and particulate emissions	0-15%	100%
By-product	Biochar (carbon sink)	Ashes
Additional environmental permits for waste combustion	NO	YES
MEVA ENERGY		

[1] Source for reference scenario units: IEA analysis based on DECC (011, IPCC (2011), Mott MacDonald (2011, Uslu et.al. (2012)


Gas for industrial burners

1 1 1 1 1 1 1

Combustion and tissue drying verified by RISE and together with commercial burner manufacturers at Hortlax

Market segment: Tissue industry

Issue:

Tissue drying is dependent on fossil gas to generate high quality process heat, conflicting demand for CO2 reduction

Solution:

Meva Energy renewable gas from local biomass replacing fossil gas

Market potential:

Beachhead: Swedish Tissue industry >700 tissue mills Ceramics, building industry, metals, food, glass, textiles etc.

Board-based furniture

THEF

Market segment: Engineered wood industry

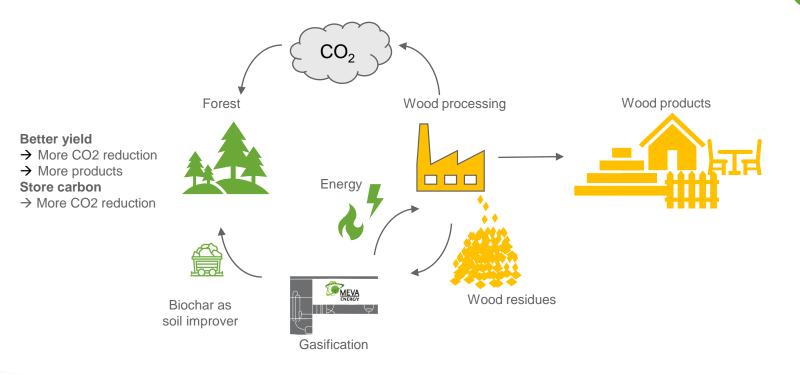
Issue:

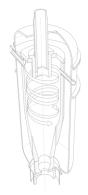
Waste issue of fine fraction contaminated wood dust (MDF/particle boards/HDF etc.) and urge to transform to renewable energy.

Solution:

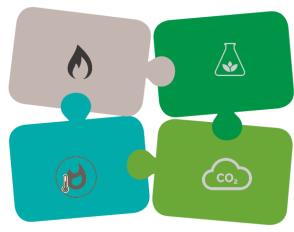
Meva Energy combined heat and power plant using wood residue to generate cost-efficient renewable energy at site

Market potential:


Beachhead: 80 Furniture related plants 147 MDF plants and 209 Particle boards in Europe



Circularity with biochar as soil improver



TECHNOLOGY

Entrained flow cyclone gasification principle

Heat & Power (CHP) Decentralized combined heat and power

With the utilization of low cost, small fraction dry biomass (woodfiber, sawdust, rice husk etc.)

Gas fuel

Replacing fossil natural gas and LPG in industrial burners

APPLICATIONS

PARTNERS

2 application examples

CHP Board based furniture manufacturing Gas Tissue industry

Projects will be announced soon

